CircularTube¶
- class pychemengg.heattransfer.internalflow.CircularTube[source]¶
Bases:
object
For heat transfer from fluid flow through a circular tube.
- Parameters
- `None_required`‘None’
This class takes no parameters for instance creation.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube # This will assign the class 'CircularTube' to the variable 'tube'. # Methods of the class 'CircularTube' can then be called like so :- # tube.method(kwarg1=x, ...)
- Attributes
- `None_required`‘None’
This class does not expose any instance attributes.
- __init__(*args, **kwargs)¶
Methods
Nu_annulus_laminar
([outerannulus_diameter, …])Nusselt number for laminar flow in annulus (one surface is isothermal and other adiabatic)
Nusselt number for laminar flow in tube (constant tube surface temperature).
Nu_dittusboelter
([Re, Pr, thermal_ID])Nusselt number for turbulent flow constant tube surface temperature.
Nu_gnielinski
([Re, Pr])Nusselt number for turbulent flow constant tube surface temperature.
Nu_liquidmetal_constflux
([Re, Pr_surface])Nusselt number for liquid metals (constant flux case).
Nu_liquidmetal_isothermal
([Re, Pr_surface])Nusselt number for liquid metals (isothermal case).
Nu_siedertate
([Re, Pr, viscosity_bulk, …])Nusselt number for turbulent flow constant tube surface temperature.
Nu_thermallyandhydrodynamicallydeveloping_laminar_siedertate
([…])Nusselt number for thermally developing and hydrodynamically developing laminar flow and constant tube surface temperature.
Nusselt number for thermally developing laminar flow and constant tube surface temperature.
Nusselt number for laminar flow in tube with constant heat flux.
__init__
(*args, **kwargs)frictionfactor_laminar
([Re])Computes friction factor for laminar flow in a pipe.
frictionfactor_turbulent
([Re, diameter, …])Computes friction factor for turbulent flow in a pipe.
hydrodynamic_entrylength_laminar
([Re, diameter])Computes laminar hydrodynamic entry length.
hydrodynamic_entrylength_turbulent
([diameter])Computes turbulent hydrodynamic entry length.
pressuredrop
([length, diameter, …])Computes pressure drop for flow in a pipe.
thermal_entrylength_laminar
([Re, Pr, diameter])Computes laminar thermal entry length.
thermal_entrylength_turbulent
([diameter])Computes turbulent thermal entry length.
- Nu_annulus_laminar(outerannulus_diameter=None, innerannulus_diameter=None, findNUat_ID='innerannulus_diameter')[source]¶
Nusselt number for laminar flow in annulus (one surface is isothermal and other adiabatic)
- Parameters
- outerannulus_diameterint or float
Outer annulus diameter for fluid flow.
- innerannulus_diameterint or float
Inner annulus diameter for fluid flow.
- findNUat_IDstr
Annulus diameter where Nu is to be found. Default = “innerannulus_diameter”, second option = “outerannulus_diameter”
- Returns
- Nuint or float
Average Nusselt number
Notes
A look table is provided in textbooks with ratio of outerannulus_diameter/innerannulus_diameter in one column and Nu_at_innerannulus_diameter and Nu_at_outerannulus_diameter in other two columns. This table is implemented and values are interpolated as required.
References
[1] Yunus A. Cengel and Afshin J. Ghajar, “Heat And Mass Transfer Fundamentals and Applications”, 6th Edition. New York, McGraw Hill Education, 2020.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube() >>> tube.Nu_annulus_laminar(outerannulus_diameter=0.1, innerannulus_diameter=0.025, findNUat_ID="innerannulus_diameter") 741.7512113817678
- Nu_constantsurfacetemp_laminar()[source]¶
Nusselt number for laminar flow in tube (constant tube surface temperature).
- Parameters
- `None_required`‘None’
- Returns
- Nufloat
Nusselt number = 3.36
Notes
The following formula is used:
\[Nu = 3.36\]References
[1] Yunus A. Cengel and Afshin J. Ghajar, “Heat And Mass Transfer Fundamentals and Applications”, 6th Edition. New York, McGraw Hill Education, 2020.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube() >>> tube.Nu_constantsurfacetemp_laminar() 3.36
- Nu_dittusboelter(Re=None, Pr=None, thermal_ID='heated')[source]¶
Nusselt number for turbulent flow constant tube surface temperature.
- Parameters
- Reint or float
Reynolds number for tube/pipe
- Print or float
Prandtl number for the fluid.
- thermal_IDstr
Identifier for whether fluid is being “heated” or “cooled”. Default = “heated”
- Returns
- Nuint or float
Average Nusselt number
Warning
A Nusselt number is returned based on the equation even if parameters (such as Re, Pr) do not fall in their respective allowable range limits (see above under ‘Notes’). However, if this happens, a warning is issued.
Notes
The following formula is used:
\[Nu = 0.023 Re^{0.8} Pr^{n}\]where:
n = 0.3 when fluid is “cooled”
= 0.4 when fluid is “heated”
Re = Reynolds number
Pr = Prandtl number
\(Re > 10000\) (for turbulent flow)
All fluid properties are at bulk mean temp (\(T_{b}\)):
\(T_{b} = (T_{fluid,in} + T_{fluid,out})/2\)
References
[1] Yunus A. Cengel and Afshin J. Ghajar, “Heat And Mass Transfer Fundamentals and Applications”, 6th Edition. New York, McGraw Hill Education, 2020.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube() >>> tube.Nu_dittusboelter(Re=10760, Pr=4.32, thermal_ID="heated") 69.40186669836865
- Nu_gnielinski(Re=None, Pr=None)[source]¶
Nusselt number for turbulent flow constant tube surface temperature. A more accurate correlation.
- Parameters
- Reint or float
Reynolds number for tube/pipe
- Print or float
Prandtl number for the fluid.
- Returns
- Nuint or float
Average Nusselt number
Warning
A Nusselt number is returned based on the equation even if parameters (such as Re, Pr) do not fall in their respective allowable range limits (see above under ‘Notes’). However, if this happens, a warning is issued.
Notes
The following formula is used:
\[Nu = \cfrac{(f/8) (Re-1000) Pr}{ 1+12.7(f/8)^{0.5} (Pr^{2/3}-1)}\]- where:
Re = Reynolds number
Pr = Prandtl number
- f = friction factor (can be determined from different correlations.
Here following ‘Petukhov’ correlation is used.)
\(f=(0.790 \ln Re - 1.64)^{-2}\) (Petukhov correlation)
\(3*10^3\eqslantless Re \eqslantless 5*10^6\) (for turbulent flow)
\(0.5 \eqslantless Pr \eqslantless 2000\)
All fluid properties are at bulk mean temp (\(T_{b}\)):
\(T_{b} = (T_{fluid,in} + T_{fluid,out})/2\)
References
[1] Yunus A. Cengel and Afshin J. Ghajar, “Heat And Mass Transfer Fundamentals and Applications”, 6th Edition. New York, McGraw Hill Education, 2020. [2] M. N. Ozisik, “Heat Transfer A Basic Approach”, McGraw Hill, 1985.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube() >>> tube.Nu_siedertate(Re=2.04e5, Pr=3.02, viscosity_bulk=4.71, viscosity_surfaceace=2.82) 741.7512113817678
- Nu_liquidmetal_constflux(Re=None, Pr_surface=None)[source]¶
Nusselt number for liquid metals (constant flux case).
- Parameters
- Reint or float
Reynolds number.
- Pr_surfaceint or float
Prandtl number at surface temperature.
- Returns
- Nuint or float
Average Nusselt number.
Notes
The following formula is used:
\[Nu = 6.3 + 0.0167 Re^{0.85} Pr_{surface}^{0.93}\]- where:
Re = Reynolds number
\(Pr_{surface}\) = Prandtl number at surface temperature
\(10^4\eqslantless Re \eqslantless 10^6\) (for turbulent flow)
\(0.004 \eqslantless Pr \eqslantless 0.01\)
All fluid properties are at bulk mean temp (\(T_{b}\)):
\(T_{b} = (T_{fluid,in} + T_{fluid,out})/2\)
except \(\Pr_{surface}\) is at surface temperature
References
[1] Yunus A. Cengel and Afshin J. Ghajar, “Heat And Mass Transfer Fundamentals and Applications”, 6th Edition. New York, McGraw Hill Education, 2020.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube() >>> tube.Nu_liquidmetal_constflux(Re=13570, Pr_surface=0.0119) 7.182405112679119
- Nu_liquidmetal_isothermal(Re=None, Pr_surface=None)[source]¶
Nusselt number for liquid metals (isothermal case).
- Parameters
- Reint or float
Reynolds number.
- Pr_surfaceint or float
Prandtl number at surface temperature.
- Returns
- Nuint or float
Average Nusselt number
Notes
The following formula is used:
\[Nu = 4.8 + 0.0156 Re^{0.85} Pr_{surface}^{0.93}\]- where:
Re = Reynolds number
\(Pr_{surface}\) = Prandtl number at surface temperature
\(10^4\eqslantless Re \eqslantless 10^6\) (for turbulent flow)
\(0.004 \eqslantless Pr \eqslantless 0.01\)
All fluid properties are at bulk mean temp (\(T_{b}\)):
\(T_{b} = (T_{fluid,in} + T_{fluid,out})/2\)
except \(\Pr_{surface}\) is at surface temperature
References
[1] Yunus A. Cengel and Afshin J. Ghajar, “Heat And Mass Transfer Fundamentals and Applications”, 6th Edition. New York, McGraw Hill Education, 2020.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube() >>> tube. Nu_liquidmetal_isothermal(Re=13570, Pr_surface=0.0119) 5.624282620227201
- Nu_siedertate(Re=None, Pr=None, viscosity_bulk=None, viscosity_surfaceace=None)[source]¶
Nusselt number for turbulent flow constant tube surface temperature. Use when temperature differences are large.
- Parameters
- Reint or float
Reynolds number for tube/pipe
- Print or float
Prandtl number for the fluid.
- viscosity_bulkint or float
fluid viscosity at bulk temperature
- viscosity_surfaceint or float
fluid viscosity at surface temperature
- Returns
- Nuint or float
Average Nusselt number
Warning
A Nusselt number is returned based on the equation even if parameters (such as Re, Pr) do not fall in their respective allowable range limits (see above under ‘Notes’). However, if this happens, a warning is issued.
Notes
The following formula is used:
\[Nu = 0.027 Re^{0.8} Pr^{1/3} \left( \frac {\mu_{bulk}} {\mu_{surface}} \right)^{0.14} \]- where:
Re = Reynolds number
Pr = Prandtl number
\(\mu_{bulk}\) = viscosity at bulk temperature
\(\mu_{surface}\) = viscosity at surface temperature
\(Re > 10000\) (for turbulent flow)
\(0.7 \eqslantless Pr \eqslantless 16700\)
All fluid properties are at bulk mean temp (\(T_{b}\)):
\(T_{b} = (T_{fluid,in} + T_{fluid,out})/2\)
except \(\mu_{surface}\) is at surface temperature
References
[1] Yunus A. Cengel and Afshin J. Ghajar, “Heat And Mass Transfer Fundamentals and Applications”, 6th Edition. New York, McGraw Hill Education, 2020. [2] M. N. Ozisik, “Heat Transfer A Basic Approach”, McGraw Hill, 1985.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube() >>> tube.Nu_siedertate(self, Re=2.04e5, Pr=3.02, viscosity_bulk=4.71, viscosity_surfaceace=2.82) 741.7512113817678
- Nu_thermallyandhydrodynamicallydeveloping_laminar_siedertate(Re=None, Pr=None, length=None, diameter=None, viscosity_bulk=None, viscosity_surface=None)[source]¶
Nusselt number for thermally developing and hydrodynamically developing laminar flow and constant tube surface temperature.
- Parameters
- Reint or float
Reynolds number for tube/pipe
- Print or float
Prandtl number for the fluid.
- lengthint or float
Length of tube
- diameterint or float
Diameter of tube
- viscosity_bulkint or float
fluid viscosity at bulk temperature
- viscosity_surfaceint or float
fluid viscosity at surface temperature
- Returns
- Nuint or float
Average Nusselt number
Warning
A Nusselt number is returned based on the equation even if parameters (such as Re, Pr) do not fall in their respective allowable range limits (see above under ‘Notes’). However, if this happens, a warning is issued.
Notes
The following formula is used:
\[Nu = 1.86 \left(\frac{Re Pr D} {L}\right)^{1/3} \left(\frac{\mu_{bulk}} {\mu_{surface}}\right)^{0.14}\]- where:
Re = Reynolds number
Pr = Prandtl number
D = Pipe inner diameter
L = Pipe length
\(\mu_{bulk}\) = viscosity at bulk temperature
\(\mu_{surface}\) = viscosity at surface temperature
\(Re < 2300\) (for laminar flow)
\(0.6 \eqslantless Pr \eqslantless 5\)
\(0.0044 \eqslantless \left(\frac{\mu_{bulk}} {\mu_{surface}}\right) \eqslantless 9.75\)
All fluid properties are at bulk mean temp (\(T_{b}\)):
\(T_{b} = (T_{fluid,in} + T_{fluid,out})/2\)
except \(\mu_{surface}\) is at surface temperature
References
[1] Yunus A. Cengel and Afshin J. Ghajar, “Heat And Mass Transfer Fundamentals and Applications”, 6th Edition. New York, McGraw Hill Education, 2020.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube() >>> tube.Nu_thermallyandhydrodynamicallydeveloping_laminar_siedertate(Re=1390, Pr=0.7228, length=0.1, diameter=0.005, viscosity_bulk=1.963, viscosity_surface=2.420) 6.664822962495227
- Nu_thermallydeveloping_laminar_edwards(Re=None, Pr=None, length=None, diameter=None)[source]¶
Nusselt number for thermally developing laminar flow and constant tube surface temperature.
- Parameters
- Reint or float
Reynolds number for tube/pipe
- Print or float
Prandtl number for the fluid.
- lengthint or float
Length of tube
- diameterint or float
Diameter of tube
- Returns
- Nuint or float
Average Nusselt number
Warning
A Nusselt number is returned based on the equation even if parameters (such as Re, Pr) do not fall in their respective allowable range limits (see above under ‘Notes’). However, if this happens, a warning is issued.
Notes
The following formula is used:
\[Nu = 3.66 + \cfrac {0.065 (D/L) Re Pr} {1 + 0.04[(D/L) Re Pr]^{2/3}}\]where:
Re = Reynolds number
Pr = Prandtl number
D = Pipe inner diameter
L = Pipe length
\(Re < 2300\) (for laminar flow)
All fluid properties are at bulk mean temp (\(T_{b}\)):
\(T_{b} = (T_{fluid,in} + T_{fluid,out})/2\)
except \(\mu_{surface}\)
References
[1] Yunus A. Cengel and Afshin J. Ghajar, “Heat And Mass Transfer Fundamentals and Applications”, 6th Edition. New York, McGraw Hill Education, 2020.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube() >>> tube.Nu_thermallydeveloping_laminar_edwards(Re=77.16, Pr=28750, length=1500, diameter=0.4) 13.729061335098443
- Nu_uniformheatflux_laminar()[source]¶
Nusselt number for laminar flow in tube with constant heat flux.
- Parameters
- `None_required`‘None’
- Returns
- Nufloat
Nusselt number = 4.36
Notes
The following formula is used:
\[Nu = 4.36\]References
[1] Yunus A. Cengel and Afshin J. Ghajar, “Heat And Mass Transfer Fundamentals and Applications”, 6th Edition. New York, McGraw Hill Education, 2020.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube() >>> tube.Nu_uniformheatflux_laminar() 4.36
- frictionfactor_laminar(Re=None)[source]¶
Computes friction factor for laminar flow in a pipe.
- Parameters
- Reint or float
Reynolds number
- Returns
- friction factorint or float
Friction factor for flowing fluid in pipe
Warning
A friction factor is returned based on the equation even if parameters (such as Re) do not fall in their respective allowable range limits (see above under ‘Notes’). However, if this happens, a warning is issued.
Notes
The following formula is used:
\[f = \frac{64}{Re}\]where:
Re = Reynolds number
f = friction factor
\(Re < 2300\) (for laminar flow)
All fluid properties are at bulk mean temp (\(T_{b}\)):
\(T_{b} = (T_{fluid,in} + T_{fluid,out})/2\)
References
[1] Yunus A. Cengel and Afshin J. Ghajar, “Heat And Mass Transfer Fundamentals and Applications”, 6th Edition. New York, McGraw Hill Education, 2020.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube() >>> tube.frictionfactor_laminar(636) 0.10062893081761007
- frictionfactor_turbulent(Re=None, diameter=None, roughness=None, surfacetype=None)[source]¶
Computes friction factor for turbulent flow in a pipe.
- Parameters
- Reint or float
Reynolds number.
- diameterint or float
Inner diameter of pipe.
- roughnessint or float
Roughness of pipe.
- surfacetypestr
Indicates if surface is to be considered “rough” or “smooth”. At least one of the two must be entered.
- Returns
- friction factorint or float
Friction factor for flowing fluid in pipe
Warning
A friction factor is returned based on the equation even if parameters (such as Re) do not fall in their respective allowable range limits (see above under ‘Notes’). However, if this happens, a warning is issued.
Notes
The following formula is used:
for “smooth” surface
\[f=(0.790 \ln Re - 1.64)^{-2} \hspace{5pt}(Petukhov\hspace{5pt}correlation)\]for “rough surface”
\[\frac{1}{\sqrt{f}} = ( -2.0 \log_{10} \left( \frac{\epsilon /D}{3.7} + \frac{2.51}{Re \sqrt{f}}\right) \hspace{5pt}(Colebrook\hspace{5pt}correlation)\]where:
Re = Reynolds number
f = friction factor
\(\epsilon\) = surface roughness of inside of pipes
All fluid properties are at bulk mean temp (\(T_{b}\)):
\(T_{b} = (T_{fluid,in} + T_{fluid,out})/2\)
References
[1] Yunus A. Cengel and Afshin J. Ghajar, “Heat And Mass Transfer Fundamentals and Applications”, 6th Edition. New York, McGraw Hill Education, 2020.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube() >>> tube.frictionfactor_turbulent(Re=126400, diameter=2/12, roughness=7e-6, surfacetype="rough") 0.017397627070796194
- hydrodynamic_entrylength_laminar(Re=None, diameter=None)[source]¶
Computes laminar hydrodynamic entry length.
- Parameters
- Reint or float
Reynolds number.
- diameterint or float
Inner diameter of pipe.
- Returns
- entry lengthint or float
Hydrodynamic entry length.
Warning
A friction factor is returned based on the equation even if parameters (such as Re) do not fall in their respective allowable range limits (see above under ‘Notes’). However, if this happens, a warning is issued.
Notes
The following formula is used:
\[L_{h} = 0.05 Re D\]where:
Re = Reynolds number
D = internal diameter of pipe
\(L_h\) = hydrodynamic entry length
All fluid properties are at bulk mean temp (\(T_{b}\)):
\(T_{b} = (T_{fluid,in} + T_{fluid,out})/2\)
References
[1] Yunus A. Cengel and Afshin J. Ghajar, “Heat And Mass Transfer Fundamentals and Applications”, 6th Edition. New York, McGraw Hill Education, 2020.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube() >>> tube.hydrodynamic_entrylength_laminar(Re=636, diameter=0.3) 9.54
- hydrodynamic_entrylength_turbulent(diameter=None)[source]¶
Computes turbulent hydrodynamic entry length.
- Parameters
- diameterint or float
Inner diameter of pipe.
- Returns
- entry lengthint or float
Hydrodynamic entry length.
Notes
The following formula is used:
\[L_{h} = 10 D\]where:
D = internal diameter of pipe
\(L_h\) = hydrodynamic entry length
References
[1] Yunus A. Cengel and Afshin J. Ghajar, “Heat And Mass Transfer Fundamentals and Applications”, 6th Edition. New York, McGraw Hill Education, 2020.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube() >>> tube.hydrodynamic_entrylength_turbulent(diameter=0.03) 0.3
- pressuredrop(length=None, diameter=None, frictionfactor=None, density=None, velocity=None)[source]¶
Computes pressure drop for flow in a pipe.
- Parameters
- lengthint or float
Length of pipe.
- diameterint or float
Diameter of pipe.
- frictionfactor: `int or float`
Friction factor of flowing fluid in pipe.
- densityint or float
Density of fluid.
- velocityint or float
Velocity of fluid in pipe.
- Returns
- pressure dropint or float
Pressure drop from flowing fluid in pipe
Notes
The following formula is used:
\[\Delta P = f \frac{L}{D} \frac{\rho V_{avg}^2}{2}\]where:
\(\rho\) = density
\(V_{avg}\) = average velocity
L = pipe length
D = pipe inner diameter
f = friction factor
\(\Delta P\) = pressure drop in pipe
All fluid properties are at bulk mean temp (\(T_{b}\)):
\(T_{b} = (T_{fluid,in} + T_{fluid,out})/2\)
References
[1] Yunus A. Cengel and Afshin J. Ghajar, “Heat And Mass Transfer Fundamentals and Applications”, 6th Edition. New York, McGraw Hill Education, 2020.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube() >>> tube.pressuredrop(length=200, diameter=0.3, frictionfactor=0.1006, density=888.1, velocity=2) 119123.81333333332
- thermal_entrylength_laminar(Re=None, Pr=None, diameter=None)[source]¶
Computes laminar thermal entry length.
- Parameters
- Reint or float
Reynolds number.
- Print or float
Prandtl number.
- diameterint or float
Inner diameter of pipe.
- Returns
- entry lengthint or float
Thermal entry length.
Warning
A friction factor is returned based on the equation even if parameters (such as Re) do not fall in their respective allowable range limits (see above under ‘Notes’). However, if this happens, a warning is issued.
Notes
The following formula is used:
\[L_{t} = 0.05 Re Pr D\]where:
Re = Reynolds number
Pr = Prandtl number
D = internal diameter of pipe
\(L_t\) = thermal entry length
All fluid properties are at bulk mean temp (\(T_{b}\)):
\(T_{b} = (T_{fluid,in} + T_{fluid,out})/2\)
References
[1] Yunus A. Cengel and Afshin J. Ghajar, “Heat And Mass Transfer Fundamentals and Applications”, 6th Edition. New York, McGraw Hill Education, 2020.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube() >>> tube.thermal_entrylength_laminar(Re=636, Pr=10863, diameter=0.3) 103633.02
- thermal_entrylength_turbulent(diameter=None)[source]¶
Computes turbulent thermal entry length.
- Parameters
- diameterint or float
Inner diameter of pipe.
- Returns
- entry lengthint or float
Hydrodynamic entry length.
Notes
The following formula is used:
\[L_{t} = 10 D\]where:
D = internal diameter of pipe
\(L_t\) = thermal entry length
References
[1] Yunus A. Cengel and Afshin J. Ghajar, “Heat And Mass Transfer Fundamentals and Applications”, 6th Edition. New York, McGraw Hill Education, 2020.
Examples
First import the module internalflow.
>>> from pychemengg.heattransfer import internalflow as intflow >>> tube = intflow.CircularTube() >>> tube.thermal_entrylength_turbulent(diameter=0.03) 0.3